Sixth Semester B.E. Degree Examination, July/August 2022 Hydraulic Structures and Irrigation Design and Drawing

Time: 4 hrs.
Max. Marks: 100
Note: Answer any TWO questions from PART-A and ONE from PART-B. PART-A
1 a. Explain with neat sketch the different zones of a reservoir.
(07 Marks)
b. The monthly yield of water from a catchment is given below. Determine the minimum capacity of reservoir by mass curve method if the flow is drawn at a uniform rate. Values are given in million cubic meters.

Month		1	2	3	4	5	6	7	8	9	10	11	12
Inflow Mm^{3}	volume	1.4	2.1	2.8	8.4	11.9	11.9	7.7	2.8	2.52	2.24	1.96	1.68

(08 Marks)
a. Name the forces that acts on gravity dam. Explain any two.
(08 Marks)
b. Following data were obtained from the stability analysis of a concrete gravity dam.
i) Total overturning moment about toe $=1 \times 10^{6} \mathrm{kN}-\mathrm{m}$.
ii) Total resisting moment about base $=2 \times 10^{6} \mathrm{kN}-\mathrm{m}$
iii) Total vertical force above base $=50000 \mathrm{kN}$.
iv) Base width of the dam $=50 \mathrm{~m}$.
v) Slope of the D / S face $=0.8[\mathrm{H}]: 1[\mathrm{~V}]$.

Calculate the maximum and minimum vertical stress at foundation level. Also calculate
what is the maximum principle stress at toe. Assume there is no tail water.
(07 Marks)
3 a. What is Earthen dams? Sketch and classify the different types of Earthen dams based on the materials and explain briefly.
(07 Marks)
b. Explain the causes for failure of Earthen dam.

PART - B

4 Design the surplus weir with the stepped apron of a tank forming part of a chain of tanks with the following details:
Combined catchment area $=25.89 \mathrm{~km}^{2}$
Intercepted catchment area $=20.71 \mathrm{~km}^{2}$
Maximum water level $=+112.75 \mathrm{~m}$
Full tank level $=+112.00 \mathrm{~m}$
Ground level at proposed site $=+111.00 \mathrm{~m}$
Ground level below proposed weir up to a reach of $6 \mathrm{~m}[$ fall $]=+110.00 \mathrm{~m}$
Top width of tank bund $=2.00 \mathrm{~m}$
Tank bund level $=+114.50 \mathrm{~m}$
Side slope of the bund on either side $=2[\mathrm{H}]: 1[\mathrm{~V}]$
Hydraulic gradient $=1: 5$
Level of hard strata $=109.50 \mathrm{~m}$
Ryve's co-efficient of combined catchment area $=9$
(25 Marks)
Draw to a suitable scale:
a. Cross section across the weir.
(15 Marks)
b. Half plan at top and half plan at foundation.
c. Half elevation and half sectional elevation.

5 A sluice is an opening by a gate for drawing supplies from a tank reservoir or canal etc. The barrel of the sluice may be masonry or cement concrete (or) R.C.C. pipe.
Design tank sluice for a tank bund with the following particulars:

Maximum Water Level [MWL]	$=+50.90 \mathrm{~m}$
Full Tank Level [FTL]	$=+50.00 \mathrm{~m}$
Ground level in u/s	$=+47.50 \mathrm{~m}$
R.L of the sill level	$=+47.00 \mathrm{~m}$
Good hard soil available for foundation	$=+46.50 \mathrm{~m}$
The average water level	$=+47.30 \mathrm{~m}$
Side slope of the bund on u/s side	$=1.5[\mathrm{H}]: 1[\mathrm{~V}]$
Side slope of the bund on D/S side	$=2[\mathrm{H}]: 1[\mathrm{~V}]$
Top level of the bund	$=+52.15 \mathrm{~m}$
Top bund width	$=2.5 \mathrm{~m}$
Canal bed width	$=1 \mathrm{~m}$
Canal discharge	$=0.1 \mathrm{~m}^{3} / \mathrm{sec}$
Canal bed level	$=+47.00 \mathrm{~m}$
Full supply level of canal	$=+47.50 \mathrm{~m}$
Side slope of canal	
Canal bank level	

(25 Marks)
Draw to a suitable scale.
a. Cross-section of the bund along the plug sluice.
b. Half plan at top and half plan at foundation.
c. Half sectional elevation and half front elevation u / s face.

