

Sixth Semester B.E. Degree Examination, July/August 2022 Hydraulic Structures and Irrigation Design and Drawing

Time: 4 hrs.

Max. Marks:100

Note: Answer any TWO questions from PART-A and ONE from PART-B.

<u>PART – A</u>

- 1 a. Explain with neat sketch the different zones of a reservoir.
 - b. The monthly yield of water from a catchment is given below. Determine the minimum capacity of reservoir by mass curve method if the flow is drawn at a uniform rate. Values are given in million cubic meters.

Month		1	2	3	4	5	6	7	8	9	10	11	12
Inflow Mm ³	volume	1.4	2.1	2.8	8.4	11.9	11.9	7.7	2.8	2.52	2.24	1.96	1.68
						(00 Maulus)							

(08 Marks)

(07 Marks)

2 a. Name the forces that acts on gravity dam. Explain any two.

(08 Marks)

(08 Marks)

(25 Marks)

(15 Marks)

(20 Marks)

(10 Marks)

- b. Following data were obtained from the stability analysis of a concrete gravity dam.
 - i) Total overturning moment about toe = 1×10^{6} kN-m.
 - ii) Total resisting moment about base = 2×10^{6} kN-m
 - iii) Total vertical force above base = 50000kN.
 - iv) Base width of the dam = 50m.
 - v) Slope of the D/S face = 0.8[H] : 1[V].

Calculate the maximum and minimum vertical stress at foundation level. Also calculate what is the maximum principle stress at toe. Assume there is no tail water. (07 Marks)

- 3 a. What is Earthen dams? Sketch and classify the different types of Earthen dams based on the materials and explain briefly. (07 Marks)
 - b. Explain the causes for failure of Earthen dam.

<u> PART – B</u>

- 4 Design the surplus weir with the stepped apron of a tank forming part of a chain of tanks with the following details:
 - Combined catchment area = 25.89km²
 - Intercepted catchment area = 20.71km²
 - Maximum water level = +112.75m
 - Full tank level = +112.00m
 - Ground level at proposed site = +111.00m
 - Ground level below proposed weir up to a reach of 6m [fall] = +110.00m
 - Top width of tank bund = 2.00m
 - Tank bund level = +114.50m
 - Side slope of the bund on either side = 2[H] : 1[V]
 - Hydraulic gradient = 1:5
 - Level of hard strata = 109.50m
 - Ryve's co-efficient of combined catchment area = 9

Draw to a suitable scale:

- a. Cross section across the weir.
- b. Half plan at top and half plan at foundation.
- c. Half elevation and half sectional elevation.
 - 1 of 2

A sluice is an opening by a gate for drawing supplies from a tank reservoir or canal etc. The barrel of the sluice may be masonry or cement concrete (or) R.C.C. pipe. Design tank sluice for a tank bund with the following particulars:

Maximum Water Level [MWL]	=+50.90m
Full Tank Level [FTL]	=+50.00m
Ground level in u/s	=+47.50m
R.L of the sill level	=+47.00m
Good hard soil available for foundation	= +46.50m
The average water level	= +47.30m
Side slope of the bund on u/s side	= 1.5[H] : 1[V]
Side slope of the bund on D/S side	= 2[H] : 1[V]
Top level of the bund	=+52.15m
Top bund width	= 2.5m
Canal bed width	= 1 m
Canal discharge	$= 0.1 \mathrm{m}^3/\mathrm{sec}$
Canal bed level	= +47.00m
Full supply level of canal	= +47.50m
Side slope of canal	= 1:1
Canal bank level	= +48.50m

Draw to a suitable scale.

S

- a. Cross-section of the bund along the plug sluice.
- b. Half plan at top and half plan at foundation.
- c. Half sectional elevation and half front elevation u/s face.

(25 Marks)

(15 Marks)

(20 Marks)